ラグランジュの運動方程式
運動方程式の一般化
デカルト座標においての運動方程式の座標成分は、
同じ運動を極座標系の動径方法と方位角方向のそれぞれで表せば、
この運動を別の形で表現してみましょう。
運動方程式の変換
座標系においてある質量の平面運動について考えます。
この質点にある力が働き、そのために微小変化が加わったとします。
この時に作用した力による微小仕事は、
で与えられます。
ベクトルをそれぞれ分解して表せば次のような式が求まることになります。
ここで上記式のとをそれぞれ、と置きます。
すると、
と表現できます。
この時の、を一般化力といいます。
運動量はだったのでそれぞれの力に分解すれば、
いまここで運動エネルギーについて考えると、
なのでこの式より、
となります。
したがって次のように表現できることになります。
極座標において速度ベクトルは、
と表せるので、運動エネルギーに関しては、
これにより、
ここで上記運動方程式を時間でそれぞれ微分します。
かつ、
これらの式をそれぞれ照らし合わせれば次のように表すことができます。
ここでの式に着目してみると外力のほかにというのが含まれています。
この式の右辺をとすると、
また、
であることを考慮すれば、
これにより以下のような関係式が求まります。
一般化座標と一般化力
デカルト座標に代わってすべての質点系の位置を特定するのに用いられる変数群を一般化座標といいます。
デカルト座標と一般化座標の間には座標変換に伴う変数関係、
があり、上記のを時間で微分すると次のようになります。
デカルト座標系のは時間の関数であるので一連の座標変換により(も時間の関数)、はの関数になるためにこのような微分表現になります。
いま、質点系の各質点が微小変化しがになったとします。
このときのの変化は、
この変位に対して力のする仕事は、
先ほどのを代入すれば、
ここで、
とおけば、
こののことを一般化座標における一般化力といいます。
ラグランジュの方程式
デカルト座標においての運動方程式の座標成分に関して、同じ運動を極座標系の動径方向と方位角方向のそれぞれに分けて考えます。
ラグランジュ関数
速度vで運動している質量mの運動エネルギーTを定義しこれの変分を考えて、T自体の時間に対する変分と微分の関係を求めていきます。
変分原理
変分原理とは、運動する物体の実現する経路が作用量と呼ばれる積分量の極値を取るように決定されるという考え方になります。
Title Text
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.