偏微分方程式

2つ以上の独立変数とその偏導関数含む微分方程式を偏微分方程式といいます。このカテゴリーでは波動や熱伝導における境界値問題やラプラス方程式、さらにはグリーン関数などを扱っていく予定になっています。

フーリエ解析

フーリエ解析という数学分野はフーリエという人が考え出した数学であり、もともとは熱の研究をしているときに熱伝導における数学的な記述を偏微分方程式により導き、その解を求めるためにこのフーリエ級数という理論的概念を構築したのが始まりだといわれています。

変分法

変分法とは、関数とその導関数との微小な変化をとらえた関数の最大値と最小値を見つけることを扱います。変分法におけるオイラー-ラグランジュ方程式は、ある関数の最大値、最小値の関数を見つけたい場合にこの微分方程式を解いていきます。

境界値に関する問題

一般的に無数の解を持つ微分方程式においてその定義されている領域の境界上で解、またはそれの導関数の値に対し何らかの条件を課すことによって解を指定します。 この条件を境界条件と呼び、この境界条件を満たす解を求める問題を 境界値問題 といいます。