ベッセルの微分方程式

ヘルムホルツ方程式と呼ばれる式に対し、円柱座標を適用させて得られるある微分方程式があります。この微分方程式の解を導くためには普段通りのやり方だとうまくいかないので、ある級数を一つの解として仮定するやり方─“級数解法”という方法を使ってその解を求めていくことになります。

懸垂線

ロープや糸などの紐の類をその両端を固定して吊り下げたものを懸垂線などといいます。これは物理的なポテンシャルが最小になるものになり、これを求めるのですがこのとき全微分の公式を使って計算していきます。

2重振り子②-微小でない場合

図のそれぞれのおもりはどちらも質量をとし、そのおもりをつないでいる糸の長さはlで曲がったりせずかつ重さは無視できるものとします。こうしたときの微小振動ではない場合の2重振り子の振動を考察していきます。

ヘヴィサイド演算子法

ヘヴィサイド演算子とは、電気工学者オリヴァーヘヴィサイドによって発明考案された微分積分における作用素を代数的に取り扱ってオペレータ作用素をD=d/dtのようにおき、それによって連立微分方程式の解をシステマティックに導いていくという一連の手法になります。