2階の偏微分方程式における境界値問題として、ここでは波動方程式を取り上げます。波動方程式とは、波動の変位に関して時間と座標に関する変数を独立変数としてとらえることのできる定数係数型偏微分方程式(双曲線偏微分方程式)であり、この方程式における境界値に関する問題を、半区間におけるフーリエ積分表示などを使って解いていくことを考えていきます。
波動方程式
返信
2階の偏微分方程式における境界値問題として、ここでは波動方程式を取り上げます。波動方程式とは、波動の変位に関して時間と座標に関する変数を独立変数としてとらえることのできる定数係数型偏微分方程式(双曲線偏微分方程式)であり、この方程式における境界値に関する問題を、半区間におけるフーリエ積分表示などを使って解いていくことを考えていきます。
ある周期的な関数があったとします。フーリエ級数展開式とはこれらに関してコサインやサインなどの三角関数を使って関数の和の形に表したものになります。このセクションではその公式の展開について具体的に考察していきます。